Survey of Global Best Practices in Green Technology

Prepared by: Dereje Hailemariam (PhD)
Tezazu Bireda (PhD Candidate)
Abel Getahun
Amare Assefa
Eyoel Getahun
Nebyu Yonas
Yonas Yehualalaeshet
Overview

- **Introduction**
- **Global Green Practices**
 - Agriculture
 - Forestry
 - Transport
 - Energy
 - Construction/Building
 - Manufacturing
 - Waste Management/Treatment
 - Mining
 - ICT Technology
 - Health
- **Trends in Green Technology**
- **Global Challenges and Opportunities**
- **Conclusion**
Introduction

- Green technology - also known
 - Environmental technology
 - Clean technology
 - Sustainable technology

- Application of science, knowledge or technology to
 - Reduce our *impact* on environment and natural resources

- Green technology reduces
 - Greenhouse effect
 - Global warming

- Accelerated carbon emissions is a threat to climate change
Introduction …

• Green technology reduces impact on the planet by
 • Create new technologies
 • Adapt the existing ones

• Green technology applications areas
 • Energy and transportation
 • Agriculture and forestry
 • Process industries and manufacturing
 • Building and construction
 • ICT
 • Health and pharmaceuticals
 • Mining
 • …..
Introduction …

- Green technology takes into account
 1. Sustainability
 - Meeting *society needs* without damaging natural resources
 2. Recyclability
 - Create products that can be fully reclaimed or *re-used*
 3. Waste reduction
 - Change production & consumption pattern
 4. Innovation
 - Developing alternative technology
 - Improve efficiency of existing technology
 5. Viability/*practicality*
 - Promote green technology and products
 - Speed their implementation and create new careers
Introduction …

- Green economy/growth
 - Results in increased human well-being and social equity
 - Reduce environmental risks
- Green growth is becoming attractive for
 - Poverty reduction
 - Environmental protection
 - Resource efficiency
 - ….

- Strategies are required to generate policies & programs
 - Accelerate investment in resource efficient technologies & new industries
 - Managing costs and risks to domestic taxpayers, businesses, communities and consumers
- Transforming economic activity is vital to the stability and sustainability of the future economy – a green economy
Introduction ...

- Examples of governments adopting green growth strategies

1. China
 - Invest in natural resource management
 - Creating one million new forestry jobs and reducing rural poverty

2. Germany
 - Focusing on environmental innovation, development of an internationally competitive environmental goods and services sector
 - Particularly focused on renewable energy

3. Korea
 - Adopted a green growth strategy to drive economic competitiveness through development and use of advanced technologies
 - Investing in innovation and deployment programs for 27 priority technologies
4. Mozambique
 - Launched the Green Economy Roadmap with the vision to become an inclusive, middle income country by 2030

5. Rwanda
 - Released the Green Growth and Climate Resilience National Strategy for Climate Change and Low Carbon Development in October 2011
 - Aims to be a developed climate-resilient, low carbon economy by 2050
 - Three key strategic objectives
 - Energy security and a low carbon energy supply
 - Sustainable land use and water resource management
 - Social protection and disaster risk reduction
Overview

- Introduction
- Global Green Practices
 - Agriculture
 - Forestry
 - Transport
 - Energy
 - Construction/Building
 - Manufacturing
 - Waste management/Treatment
 - Mining
 - ICT Technology
 - Health
- Trends in Green Technology
- Global Challenges and Opportunities
- Conclusion
Green Agriculture

- Agriculture accounts 13-15% of world GHG emissions
- Green agriculture
 - Limit or eliminate toxic substance footprints to the soil, air, water and environment
 - Conserves resources, energy and improve land through reduced chemical usages
 - Reduces soil erosion and improve water use
 - Help other green technology-based sectors
 - E.g., renewable energy and agro tourism
- **Best practice**: Pyrethrum as pesticide in *Kenya*
Forestry

• Green forestry
 • Reduces carbon emission
 • Source of raw material
 • Sustain health & diversity of ecosystems
• Best practices
 • Sweden owns 1% of the world’s commercial forest but provides 10% of the world’s sawn timber, pulp and paper
 • Brazil recorded the biggest reductions in deforestation and emissions
Biofuels

- Production of bio-renewable energy from biomass or wastes
- Biofuels are considered CO$_2$ neutral
- Best practice
 - *Brazil* uses biofuel as much as 70% to meet their energy needs from sugarcane
Overview

- Introduction

Global Green Practices
- Agriculture
- Forestry
- Transport
- Energy
- Construction/Building
- Manufacturing
- Waste Management/Treatment
- Mining
- ICT Technology
- Health

- Trends in Green Technology
- Global Challenges and Opportunities
- Conclusion
Global energy consumption is increasing by 1.5% annually in recent years.
From 2007–2012,

- Renewable power generation grew at an average rate of 5.9% per year.
- Global electricity consumption increased by an annual average rate of 2.7%
Green Energy

- Renewable energy is being used in power, heating and cooling sectors

Solar PV
- Germany: 38GW
- China: 28 GW
- Japan: 23GW
- China, Japan and USA leading solar PV market
- Average solar PV price reduced to record $0.6/watt
- 177GW, Global installed capacity by 2014

Wind Power
- China: 115 GW
- USA: 66GW
- Germany: 39GW
- Asia, EU and North America regions leading global market
- least-cost option for power Generation
- 370GW, Global installed capacity by 2014

CSP
- Spain: 2.3GW
- USA: 1.6GW
- Rest of the world: 0.5GW
- Market less established than most other renewable energy markets.
- 4.4GW, Global capacity by 2014

Hydropower
- China: 280GW
- Brazil: 89GW
- USA: 79 GW
- China, Brazil, USA, Canada, Russia & India accounted for 60% of global installed capacity
- 1055GW, Global capacity by 2014

Survey of Global Best Practices in Green Technology
Green Energy

Heater

- In 2014 survey, 50% of the total energy consumption accounted for heating.
- Among this figure renewable energy contribution is about 25%.
- Half of renewable heat consumption occurs in:
 - Buildings for space heating,
 - Water heating, and cooking,
 - [Primarily derived from biomass, solar and Geothermal]

Best Experience

Asia: China dominate the global solar heating market in 2014 and to lead the world in the direct use of geothermal and biogas for heat.

Europe: EU leading in modern renewable energy for heating, Iceland, Norway, and Sweden have a record of (over 50%) in the world.

Latin America: Brazil has experienced strong growth in solar water heating.

Africa: sugarcane industries in Ethiopia, Kenya and Mauritius fueling cogeneration plants with bagasse.

Middle East: Israel leads for total capacity of solar water collectors, followed by the Palestinian Territories, Jordan, and Lebanon.
Green Transport

- Transport accounts 23% GHG emissions
- Green transport
 - Allows basic transport needs of societies
 - Limits emissions and waste
 - Affordable, operates efficiently, offers choice of transport mode
 - Alternative transportation modes

- Benefits include
 - Fuel/energy efficiency
 - Lower-carbon transportation energy sources
 - Capturing contaminants
 - System efficiency/optimization

- Best practice
 - Holland, Brazil, Singapore, Germany (Low Emission Zone)
Overview

- Introduction
- **Global Green Practices**
 - Agriculture
 - Forestry
 - Transport
 - Energy
 - Construction/Building
 - Manufacturing
 - Waste Management/Treatment
 - Mining
 - ICT Technology
 - Health
- Trends in Green Technology
- Global Challenges and Opportunities
- Conclusion
Green Building/Construction

- Green building reduces impact on the environment and human health

- How to achieve green buildings?
 - Good building design and use of space
 - Energy-efficient lighting and appliances
 - Using alternate sources, e.g., solar or wind power
 - Water-saving plumbing fixtures
 - Adaptive reuse of older buildings

- Advantages
 - Reduced energy and water consumption
 - Lower Greenhouse Gas Emission
 - Improved indoor air quality
 - Decreased operating cost
 - Increased building value
 - ...
Green Cities

• **Facts**
 - 50% of the world’s population live in cities and to increase to 70% by 2050
 - Source of 70% of the world’s GHG emissions
 - Growing cities put pressure on energy and water resources, waste management, sewer systems, and transport networks

• **How to achieve Green Cities?**
 - Effective land use
 - Energy consumption and Co2 emission
 - Effective public transport system
 - Sustainable waste treatment and sanitation
 - Clean Air policy
 - Good Environmental Governance
Green Cities …

- **Steps for Greener Cities**
 - Good governance and leadership at the city level
 - At early stage right policies matter more than Wealth
 - Civic engagement
 - The right technology
 - Tackle informal settlements

- **Model Cities** *Singapore, Copenhagen & Cape Town*
Green Manufacturing

- **Using renewable materials**
- **Using fewer materials** that are non-hazardous
- **Modifying production processes** to reduce less resource and waste
- **Less packaging**, lowering product weight, efficient logistics, ...
- **Designing your product to be** reusable, recyclable, or bio-degradeable
- **Expand life of product**, make it easier to repair & use fewer resources
- **Reduce environmental impact** of sales and distribution

January, 2016
Survey of Global Best Practices in Green Technology
Green Manufacturing

Best practices in Green Manufacturing

- **Sugar industry**
 - Waste products are used as
 - Soil conditioners and fertilizers
 - Paper production & animal feed
 - Chemical, yeast, alcohol, fuel and Electricity production

- Best practice: **Brazil**

- **Leather industry**
 - Use of cleaner and less water
 - Alternative energy from waste products
 - Hair into organic fertilizers
 - Improving air quality by implementing new technology

- Best practice: **Romania** by enforcing polices
Green Manufacturing

• Cement industry
 • Adopting latest technologies
 • Utilizing alternative raw material
 • Utilization of industrial waste like fly ash
 • Increasing renewable energy usage
 • Biomass and industrial waste
 • Implementing waste heat recovery system
 • Shifting towards bulk transportation

• Best practice India
 • Mandatory environmental standards and accreditation
Overview

- Introduction
- **Global Green Practices**
 - Agriculture
 - Forestry
 - Transport
 - Energy
 - Construction/Building
 - Manufacturing
 - Waste Management/Treatment
 - Mining
 - ICT Technology
 - Health
- Trends in Green Technology
- Global Challenges and Opportunities
- Conclusion
Waste Management/Treatment

- Involves collecting, transporting, processing, recycling or disposal and monitoring of wastes
- Types of waste constitute
 - Municipal solid waste
 - Industrial waste
 - Agricultural waste
 - Mining waste
 - Bio waste
 - Kitchen waste
 - Hazardous waste
- Best practice: **Sweden**
 - Recover energy from waste for heating and electricity generation
 - Global leader
Green Mining

- Mining has environmental impacts like air pollution, water pollution, solid waste, and abandoned mine sites
- Green mining
 - Promotes materials and energy efficiency
 - Ensures availability of minerals for future needs
 - Minimizes environmental and social impacts
 - Ensures sustainable land use following mine closure
- Best practice: Finland is working to be world #1 in sustainable mineral exploration by 2050
Overview

- Introduction
- **Global Green Practices**
 - Agriculture
 - Forestry
 - Transport
 - Energy
 - Construction/Building
 - Manufacturing
 - Waste Management/Treatment
 - Mining
 - ICT Technology
 - Health
- Trends in Green Technology
- Global Challenges and Opportunities
- Conclusion

January, 2016
Green ICT

- Has great influence on shaping a more sustainable world
- Study the practices of environmentally sustainable computer or IT

Green ICT is used for
1. Managing ICT sector’s own activity
 - Efficient PCs, datacenters, telecom service and network
2. ICT Solutions to manage other sector's activity
 - Smart manufacturing
 - Smart Grid and Metering
 - Smart transportation
 - Smart Infrastructure
Managing the ICT Sector’s own Activity

PE, Data centers and network 2% of total carbon footprint (2007)

If uncurbed 6% in 2020 [Gartner]

ICT Emissions

Reduce power consumption of

- PCs and monitors
- Software & service
- Data Centers (air conditioning, ups, lighting)
- Telecommunication services (Indian Mobile and China Mobile)

Sharing of resources and usage of a common Data center (reduction in 68-87% of energy) [Google]
ICT Solutions to Manage other Sector’s Activity

January, 2016
Survey of Global Best Practices in Green Technology

32
Green Health

- Health sector is major source of GHG
 - E.g. in US it contributes 8% of the nation’s total GHG emissions
- Green health
 - Prevents, reduces, or generates less waste
 - Reduces energy and water usage
 - Uses green construction
 - Avoids hazardous substances and toxic chemicals
 - Uses organic food from green agriculture
 - Uses green chemicals
- Best practice: Scotland
Overview

- Introduction
- Global Green Practices
 - Agriculture
 - Forestry
 - Transport
 - Energy
 - Construction/Building
 - Manufacturing
 - Waste Management/Treatment
 - Mining
 - ICT Technology
 - Health
- Trends in Green Technology
- Global Challenges and Opportunities
- Conclusion
Trends in Green Technology

- Green pharmacy
- Energy storage
- Advanced robotics
- Next-Generation Genomics

Survey of Global Best Practices in Green Technology
Trends in Green Technology

- Autonomous and Near-Autonomous Vehicles
- 3D Printing
- Advanced Materials
- Advanced Oil and Gas Exploration
- The Internet of Things
- Carbon Dioxide Conversion and Use
Overview

- Introduction
- Global Green Practices
 - Agriculture
 - Forestry
 - Transport
 - Energy
 - Construction/Building
 - Manufacturing
 - Waste Management/Treatment
 - Mining
 - ICT Technology
 - Health
- Trends in Green Technology
- Global Challenges and Opportunities
- Conclusion
Global Challenges

- **Limited knowledge** on availability and benefits of green technology solutions
 - End users often see green technology as an incremental cost rather than a potential benefit
- Green technology solutions are not **customized** to meet global environmental and market requirements
- Not many **policy incentives** around the world to push private sector to highly get involved in green projects

Survey of Global Best Practices in Green Technology

January, 2016
Global Opportunities

- Helps on the fight against
 - Global warming and climate change
 - Depleting energy resources
- Conserves ecosystem
- Creates opportunities for
 - New business in green industries
 - High market in retrofitting existing projects
 - Social, political and economical sustainability
Conclusion

- Green growth offers considerable environmental, cultural, social and economic welfares
- Systematic planning, analysis, implementation and monitoring are key for green growth success
- Comprehensive assistance for green transformation is a necessity
- Continuous efforts to investigate, assess and validate long-term green transformational benefits of green growth strategies is an obligation